Friday, Apr 20 2018 | Time 04:51 Hrs(IST)
image
image image
  • Cosby sex assault retrial to go to jury next week -judge
  • Mattel names former Maker Studios executive as CEO after Georgiadis quits
  • Judge rejects Missouri governor's bid to dismiss criminal case
  • Former New York Mayor Giuliani to join Trump legal team
  • Iran warns of 'unpleasant' response if U S drops nuclear deal -TV
  • Sudan's president sacks foreign minister - state news agency
  • Russia, Syria trying to 'sanitize' chemical attack site - U S State Dept
  • Man allegedly commits suicide by hanging himself; family suspects foul play
  • South Africa to charge Zuma's son over car crash death
  • Soros foundations to quit Hungary amid political hostility
  • Probe into Prince's opioid death brings no criminal charges
  • Combating Air Pollution : LG directs round the clock deputation of Env Marshalls at landfill sites
  • Sunrisers Hyderabad crushed under Chris Gayle's ton
  • IPL: Kings XI Punjab beat Sunrisers Hyderabad by 15 runs
Science & Technology » Astronomy and Space Sciences Share

Solving the star-formation puzzle

Solving the star-formation puzzle

New Delhi, Feb 8 (UNI) Using measurements taken by radio antennas, a group of astrophysicists from the RIKEN Star and Planet Formation Laboratory has found clues as to how gas from collapsing molecular clouds in star-forming regions of the universe find its way to the surface of the stars that are still at the formative stage.
One of the big puzzles in astrophysics is how stars like the sun manage to form from the collapsing molecular clouds.
Technically, he puzzle is known as the angular momentum problem in stellar formation.
The problem essentially is that the gas in the star-forming cloud has some rotation, which gives each element of the gas an amount of angular momentum.
As it collapses inward, eventually it reaches a state where the gravitational pull of the nascent star is balanced by the centrifugal force, so that it will no longer collapse inward of a certain radius unless it can shed some of the angular momentum.
This point is known as the centrifugal barrier.
To gain a better understanding of the process, Nami Sakai and her group turned to the ALMA observatory, a network of 66 radio dishes located high in the Atacama Desert of northern Chile.
The research has been published in the Monthly Notices of the Royal Astronomical Society published by Oxford University Press.
The ALMA dishes are connected together in a carefully choreographed configuration so that they can provide images on radio emissions from protostellar regions around the sky.
The group chose to observe a protostar designated as L1527, located in a nearby star-forming region known as the Taurus Molecular Cloud.
The protostar, located about 450 light years away, has a spinning protoplanetary disk, almost edge-on to our view, embedded in a large envelope of molecules and dust.
Previously, Sakai had discovered, from observations of molecules around the same protostar, that unlike the commonly held hypothesis, the transition from envelope to the inner disk-which later forms into planets-was not smooth but very complex.
"As we looked at the observational data," says Sakai, "we realized that the region near the centrifugal barrier-where particles can no longer infall-is quite complex, and we realized that analysing the movements in this transition zone could be crucial for understanding how the envelope collapses,” she says.
The observations showed that there is a broadening of the envelope at that place, indicating something like a "traffic jam" in the region just outside the centrifugal barrier, where the gas heats up as the result of a shock wave.
It became clear from the observations that a significant part of the angular momentum is lost by gas being cast in the vertical direction from the flattened protoplanetary disk that formed around the protostar.
This behaviour accorded well with calculations the group had done using a purely ballistic model, where the particles behave like simple projectiles that do not need to be influenced by magnetic or other forces.
"We plan to continue to use observations from the powerful ALMA array to further refine our understanding of the dynamics of stellar formation and fully explain how matter collapses onto the forming star,” says Sakai.
“This work could also help us to better understand the evolution of our own solar system.
" UNI YSG SHS RAI1205

image